
Strategic Proof Tutoring in Logic

Douglas Perkins

July 20, 2007

Contents

1 Background 1
1.0.1 Acknowledgments . 1

1.1 An overview of the Logic and Proofs course . 1
1.1.1 History of the Logic and Proofs course . 2
1.1.2 Course structure . 2

1.2 Formal Logic . 3
1.2.1 Natural deduction proofs . 4
1.2.2 The intercalation calculus . 7
1.2.3 Strategic proof search in natural deduction 9
1.2.4 The extraction rule . 10

1.3 AProS: The Proof Generator . 11
1.3.1 How to produce a tactical proof tree . 11

1.4 The Carnegie Proof Lab . 11

2 Proof tutoring in propositional logic 15
2.1 Tactical explanations in propositional logic . 15
2.2 Walking through proofs in propositional logic . 18
2.3 Completing proofs in propositional logic . 21

2.3.1 Normalizing a proof . 21
2.3.2 Cropping a proof . 21
2.3.3 Putting it together . 22

3 Discussion 23
3.1 Incorporation into Logic and Proofs . 23
3.2 Research into the Psychology of Proof . 24
3.3 Extensions . 24

A Inference Rules 26

B Algorithms 30

1

Abstract

In the mostly online course Logic and Proofs, students learn to construct natural deduction proofs in
the Carnegie Proof Lab, a computer-based proof construction environment. When given challeng-
ing problems, students have difficulty figuring out how the premises connect with the conclusion.
Through use of a modification of the intercalation calculus, a strategy is provided to students on
choosing which inference rules to apply in various circumstances. The strategy is also implemented
in AProS, an automated theorem prover. In this thesis I describe how the Carnegie Proof Lab has
been extended to provide three different modes of dynamic strategic proof tutoring, using AProS
to help generate hints. The Explanation Tutor explains how tactics apply to partial proofs, the
Walkthrough Tutor guides students through strategically constructed proofs, and the Completion
Tutor provides on-demand strategic hints. When properly used, they should provide students with
support in learning how to construct proofs in a strategic fashion.

Chapter 1

Background

For our project it was crucial to have a “theorem proving system” that can provide
advice to a student user; indeed, pertinent advice at any point in an attempt to solve
a proof construction problem. To be adequate for this task a system must be able to
find proofs, if they exist, and follow a strategy that in its broad direction is logically
motivated, humanly understandable, and memorable. [Sieg and Scheines, 1992]

Logic and Proofs is an introduction to formal logic. This online course provides a proof construction
environment. AProS, an automated theorem prover, provides the basis for automated dynamic hint
generation as part of the proof construction process. The core of my work, then, is putting these
two components together in a sensible and effective fashion, providing a demonstration of how one
can harness an expert system in order to provide automated tutoring as well as a useful addition
to education software that is and will continue to be used by students every semester.

1.0.1 Acknowledgments

Some of the ideas here go back a long time; the first papers on the topic were written by Sieg
and Scheines; e.g., Sieg and Scheines [1992, pp. 154]. I make extensive use of AProS, written in
large part by Joe Ramsey, and later rewritten by Tyler Gibson. When I needed new features or
changes to AProS and the Carnegie Proof Lab, Tyler Gibson and Davin Lafon provided a great
deal of assistance. The technical groundwork for implementation of the tutor was laid by Jesse
Berkelhammer and Davin Lafon. Producing a good tutor involved discussions with many of the
aforementioned individuals, as well as Marjorie Carlson, Iliano Cervesato, Akiva Leffert, Jason C.
Reed, and Paul Zagieboylo. Finally, the entire project exists because of Sieg, who has kept me
moving in the right direction.

1.1 An overview of the Logic and Proofs course

Logic and Proofs [Open Learning Initiative website, AProS website] is an online logic course,
developed at Carnegie Mellon University (CMU) since 2003. The course covers propositional and
first-order logic, motivating each of these with natural language examples of arguments captured
in said logics. The online text is composed of HTML with graphics, Flash videos [Flash website]

1

and exercises. Each Flash exercise is designed either to elucidate a restatement1 — or make use2

— of a recently presented concept. It also makes use of the Carnegie Proof Lab (CPL), a natural
deduction problem solving environment.

1.1.1 History of the Logic and Proofs course

In the early nineties, the Carnegie Proof Tutor project [Sieg and Scheines, 1992, pp. 154] explored
the effects of different computer-based proof construction environments. At that time, Sieg was also
developing the intercalation calculus, a formalization similar in character to the sequent calculus,
to enable automated proof search in natural deduction. In the latter half of the decade, the
intercalation calculus was extended from propositional to first-order logic [Sieg and Byrnes, 1998].
AProS, short for “automated proof search”, is an automated theorem prover that makes use of
the intercalation calculus in proof search. The Logic and Proofs project began in 2003. On one
side it involved developing an online logic course, complete with the Carnegie Proof Lab, a natural
deduction proof construction environment. On the other side, it involved implementing AProS in
Java. In 2003 and until recently, some of the libraries in AProS were shared with the Carnegie
Proof Lab, but this was the extent of the overlap. While the Carnegie Proof Tutor does contain
“tutor” in the title, it is only recently that we have implemented tutoring in the Carnegie Proof
Lab, and in this way AProS and the Carnegie Proof Lab have been brought closer together [Sieg,
2007].

1.1.2 Course structure

The online Logic and Proofs material can be used in various ways: as a completely online course that
meets only for exams, as a course that meets once a week (as done at CMU), as a course meeting
two or three times a week with the online text used instead of a paper textbook, or some variation
on the above. The online material is organized and presented in a fashion designed to lessen the
need for lectures, so instructors can use class time for review, group work, student presentations,
or other non-lecture activities. As offered at CMU, Logic and Proofs is a general elective with
no prerequisites. The class has thirteen chapters — an introductory chapter on statements and
arguments is followed by six chapters for propositional logic and six more for first-order logic.
Chapters are typically completed weekly. In each section, there are chapters devoted to motivation
and syntax of the language, chapters devoted to semantics and finding counterexamples with truth
trees, and four chapters involving proofs. By the end of five chapters (five weeks, then), students
are expected to be able to produce reasonably complex and long proofs3 in propositional logic.
The basic rules of propositional and first-order logic have their respective chapters, as do derived
rules and strategies. Other major topics include metamathematics and Aristotelian logic. There
are homework assignments at the end of each chapter as well as Learn by Doing exercises, either
in Flash or using the Carnegie Proof Lab.

1See Chi et al. [1994] for more on the value of self-explanation.
2Small exercises may be useful for helping students learn how to use a method and identify broad misunderstandings

about the method.
3Let us somewhat arbitrarily say that a complex proof involves perhaps five or more nested subproofs and many

different inference rules, while a long proof is perhaps twenty to thirty-five lines long.

2

1.2 Formal Logic

Logic and Proofs covers natural deduction proofs in classical sentential and first-order logic. I use
fairly standard formal logic notation, but because notation often varies in subtle and important
ways, it is worth reviewing.

Propositional formulas Atomic formulas are upper-case letters A,B, . . . , Z. Compound formu-
las are produced recursively. Given any two formulas ϕ and ψ, there are compound formulas
¬ϕ, (ϕ&ψ), (ϕ∨ψ), (ϕ→ψ), and (ϕ↔ψ). A contradiction is represented by the falsum, ⊥.
Logic and Proofs diverges from the presentation in Sieg and Byrnes [1998] in that ⊥ is used
to represent a contradiction and is often used in place of the contradiction itself. However, ⊥
is a special formula in the language4 , and can only be used as noted.

Variables for propositional formulas Variables that range over formulas are lower-case Greek
letters — typically, ϕ, ψ, and ρ. Unless explicitly stated, variables do not represent ⊥; one
should use ⊥ itself as needed.

Quantifiers Lower-case letters a, b, . . . , z are terms. There are two types of terms: constants,
a, b, . . . , s, and variables, u, v, . . . , z. For convenience, we reserve t for terms that could be
constants or variables. Given any formula ϕ and any variable x, one can form the first-order
compound formulas (∀x)ϕ and (∃x)ϕ. If an instance variable is not quantified in a formula
ϕ, it is free in ϕ; otherwise, it is bound. The rules for producing compound formulas in
propositional logic also apply in first-order logic.

Predicates Upper-case letters A,B, . . . , Z followed by parentheses containing zero or more terms
are predicates. Zero-place predicates behave just like propositional atomic formulas, and I
often drop the parentheses after such predicates.

Subformulas For any formula ϕ, ϕ is a subformula of ϕ. For any formula ρ of form (ϕ&ψ),
(ϕ∨ψ), (ϕ→ψ), or (ϕ↔ψ), ϕ and ψ are subformulas of ρ. ϕ is a subformula of ¬ϕ. As for
first-order logic, ϕ with all free instances of x replaced by any term t is a subformula of (∀x)ϕ
and (∃x)ϕ for any variable x. As well as being reflexive, the subformula property is transitive;
that is, if ϕ is a subformula of ψ and ψ is a subformula of ρ, then ϕ is a subformula of ρ.
Another useful notion is that of a strictly positively embedded subformula. Strictly positively
embedded subformulas are defined just like subformulas with the following exceptions: for
any formulas ϕ and ψ, ϕ is not a positively embedded subformula of ¬ϕ or (ϕ→ψ). If ϕ is
a positively embedded subformula of ψ, we say ϕ is positively embedded in ψ. A positively
embedded subformula that is a negation is called a positively embedded negation. Let ϕ / ψ
mean that ϕ is a positively embedded subformula of ψ.

Variables for first-order formulas Variables for first-order logic are similar to those for propo-
sitional logic. Lower-case Greek letters are used, and the interior of a predicate is expounded
as necessary. For example, ϕ (a, b, c) can represent A (a, b, c) or E (a, b, c) but not A (b, c). If
the interior of the predicate is irrelevant, the formula may be represented as just ϕ.

4In some standard presentations, Prawitz [1965] and van Dalen [2004], e.g., ⊥ is an atomic formula, and ¬ϕ is
shorthand for ϕ→⊥. This is distinct from Logic and Proofs, where ⊥ is not used in building complex formulas and,
consequently, ¬ϕ cannot be rewritten as ϕ→⊥.

3

For the above syntactic objects, if one is running low on them, one can subscript them with natural
numbers — that is, x0, ϕ100, and similar syntactic objects are permissible. In Logic and Proofs,
the material is divided strictly into propositional and first-order sections, so terms, predicates, and
quantifiers are all introduced at roughly the same time.

1.2.1 Natural deduction proofs

A proof is a finite sequence of formulas with several constraints. The first zero or more formulas
are the premises, and the last formula is the goal. Each formula has a corresponding justification,
where a justification could be that the formula is a premise, assumption, or the result of an inference
rule; these are described in the next section. Additionally, every formula is in a subproof, which
is determined by the set of premises and assumptions upon which the formula relies. For a proof
or partial proof, let us define the assertion as the original premises and conclusion of it. Logic and
Proofs uses Fitch diagrams5 to present proofs. When constructing proofs, Fitch diagrams have
some advantages over Gentzen’s tree notation, but because the recursive construction of a tree
is easier to describe than that of a Fitch diagram and many properties of proofs are described
recursively, tree proofs are often easier to use and understand when describing properties of proofs.
Converting to and from a Fitch diagram to a tree proof is conceptually easy, so I switch notation
as clarity dictates.

In Logic and Proofs, students bridge the gap from the premises of an argument to its conclu-
sion using inference rules6. The two big questions, closely connected, are “what inference rules
can be applied right now?” and, given that list, “how shall I decide the order in which to try
them?”. The latter question is addressed in Section 1.2.3; as for the former — close in keeping with
the presentations in Gentzen [1969] and Prawitz [1965], Logic and Proofs has the following basic
rules: Conjunction Elimination Left (&EL), Conjunction Elimination Right (&ER), Conjunction
Introduction (&I), Disjunction Elimination (∨E), Disjunction Introduction Left (∨IL), Disjunction
Introduction Right (∨IR), Implication Elimination (→E), Implication Introduction (→I), Nega-
tion Introduction (¬I), Negation Elimination (¬E), and Falsum Introduction (⊥I)7. By replacing
Negation Elimination with ex falso quodlibet, intuitionistic logic is obtained8. By adding Universal
Elimination (∀E), Universal Introduction (∀I), Existential Elimination (∃E), and Existential Intro-
duction (∃I), first-order logic is obtained. See Appendix A for precise formulations of the inference
rules. Each of the above rules is classified either as an elimination rule or an introduction rule by
its name, except that Negation Elimination is an introduction rule and Falsum Introduction is an
elimination rule. Also, the above rules can be used from the premises working towards the goal
(forwards), from the goal working towards the premises (backwards), and working directly from
both the premises and the goal (forwards-backwards). An example of a forwards move is found
in Table 1.1. Because forwards moves are dependent only upon the premises or assumptions used
in the rule, it is easy to use forwards rules that produce unwanted or unneeded lines in a partial
proof. One can work backwards from a goal, so we mark open questions — that is, goals not yet

5More precisely, Logic and Proofs places subproofs in whole boxes, a notation used by Jàskowski in 1934, later
dropped due to typesetting hassles and replaced by vertical bars on the left side of the proof [Pelletier, 1999]. Fitch’s
notation is standard today, and it is similar enough to Jàskowski’s that a reader familiar with the first should have
no trouble reading proofs in the second.

6See Harper [2007, pp. 4] for a formal definition of inference rules.
7Only Negation Elimination and Falsum Introduction are formulated differently; see Appendix A.
8Intuitionistic logic is briefly mentioned in Logic and Proofs, but the topic is not extensively pursued there, so

neither will it be here.

4

1 A&B Premise
...

2 C ***
(a) The starting partial proof.

1 A&B Premise

2 B &ER, 1
...

3 C ***
(b) The partial proof after apply-
ing Conjunction Elimination Left
to A & B.

Figure 1.1: An example of a forwards move.

proven — with *** to the right. A completed proof is one with no open questions; a partial proof,
by contrast, is one with at least one open question. An example of a backwards move is found in
Figure 1.2. Because backwards moves are fairly well determined, except for Disjunction Introduc-
tion Left and Disjunction Introduction Right, there is little ambiguity in determining which rule
to use. Forwards-backwards moves involve selecting a premise and a goal. Application of the rule

...

1 C→D ***
(a) The starting partial
proof.

1 C Premise
...

2 D ***

3 C→D →I, 2
(b) The partial proof after ap-
plying Implication Introduction to
C→D.

Figure 1.2: An example of a backwards move.

produces one or two subproofs with an assumption and goal in each. These rules are sometimes
called closed scope elimination rules or simply closed scope eliminations, and the conclusion of such
a rule may have no syntactic connection with the premise. An example of a forwards-backwards
move is found in Figure 1.3.

A proof or partial proof is p-normal if no formula occurrence in it is the major premise of an
elimination rule as well as the conclusion of either an introduction rule or Negation Elimination [Sieg
and Byrnes, 1998, pp. 68]. In a small shift9 from Sieg and Byrnes, I define the adjacency condition
as follows. The adjacency condition is satisfied so long as there there is no rule application of Falsum
Introduction such that either the major premise of that application is the conclusion of Negation
Introduction or Negation Elimination10. See Figure 1.4 for examples of non-normal proofs. If a
proof or partial proof is p-normal and satisfies the adjacency condition, it is by definition normal;

9This change is necessary because of minor differences in formulation of the negation rules. In Sieg and Byrnes
[1998], the falsum, ⊥, is not used. In Logic and Proofs its use is highly restricted.

10Also, one could disallow the minor premise to be the conclusion of Negation Elimination. Say the goal is ⊥ and
a contradictory pair is chosen, ϕ and ¬ϕ. Trying to prove ϕ by Negation Elimination means assuming ¬ϕ and trying
to prove a contradiction. However, ¬ϕ needs to be proven anyway, so assuming it in the subproof is not helpful. That
is, if ¬ϕ can be proven, and by assuming ¬ϕ one can infer ⊥, then one can prove ⊥ without that use of Negation
Elimination. This is stronger than normality as defined in Sieg and Byrnes [1998] or Prawitz [1965], though.

5

1 E ∨F Premise
...

2 G ***
(a) The starting partial proof.

1 E ∨F Premise

2 E Assume
...

3 G ***

4 F Assume
...

5 G ***

6 G ∨E, 1, 3, 5
(b) The partial proof after applying
Disjunction Elimination on E ∨F
and G.

Figure 1.3: An example of a forwards-backwards move.

1 A Premise

2 A&A &I, 1, 1

3 A &E, 2
(a) This proof is not p-normal.

1 ¬C Assume
...

2 C ***

3 ⊥ ⊥I, 2

4 C ¬E, 3
(b) This partial proof violates the
adjacency condition.

Figure 1.4: Non-normal proofs.

6

this is equivalent to Prawitz’s definition [Sieg and Byrnes, 1998, pp. 68]. As discussed later, non-
normal proofs and partial proofs can be undesirable in proof construction; see also Prawitz [1965]
and Sieg and Byrnes [1998].

1.2.2 The intercalation calculus

. . . there was one question that disturbed [the student] again and again: “Yes, the
solution seems to work, it appears to be correct; but how is it possible to invent such a
solution? . . . and how could I invent or discover such things by myself?” [Polya, 1945].

In order to shrink the search space and avoid detours in natural deduction proof construction,
rule use can be restricted, either formally, by not allowing undesirable moves, or informally, by
recommending only desirable moves. To this end, we reexamine the intercalation calculus, a modi-
fication of the sequent calculus that more cleanly captures proof search in natural deduction. This
presentation is similar to Sieg [2005], Sieg and Byrnes [1998], Sieg [1992], and Sieg and Scheines
[1992], except that it is more restrictive. Here we want to use the intercalation calculus in a limited
way — to capture a particular strategic approach to proof search and construction which will be
discussed in Section 1.2.3. Consequently, we formulate the inference rules to directly mirror this
approach.

The intercalation calculus11 can be formulated in production rules that operate over triples of
the form Γ ;n J ϕ ?G or Γ ; · ?G, shown below. Γ is the set of premise and assumption formulas, G
is the goal formula, and n J ϕ is an extraction — an occurrence of the goal, n, strictly positively
embedded in ϕ. Let · denote the empty extraction. We call the triple on the right of the 7−→ the
premise of the rule and the triple on the left the result of the rule. The intercalation calculus rules
are expressed as rewrite rules; we start with the ↑ and ¬ rules.

• &↑: Γ ; · ? (ϕ&ψ) 7−→ Γ ; · ?ϕ and Γ ; · ?ψ.

• ∨i↑: Γ ; · ? (ϕ1 ∨ϕ2) 7−→ Γ ; · ?ϕi for i = 1 or i = 2.

• →↑: Γ ; · ? (ϕ→ψ) 7−→ Γ ∪ {ϕ} ; · ?ψ.

• ¬↑: Γ ; · ?¬G 7−→ Γ ∪ {G} ; · ?⊥.

• ¬C: Γ ; · ?G 7−→ Γ ∪ {¬G} ; · ?⊥.

• ⊥(F): Γ ; · ?⊥, ϕ ∈ F (Γ) 7−→ Γ ; · ?ϕ and Γ ; · ?¬ϕ.

• ∨�∗: Γ ; · ?G and (ϕ∨ψ) ∈ Γ 7−→ Γ ∪ {ϕ} ; · ?G and Γ ∪ {ψ} ; · ?G.

For ⊥(F), let F (Γ) denote the set of unnegated formulas whose negations are positively embedded
subformulas in Γ. ¬C may not be used when the goal is ⊥. To start using ↓ rules, the goal must
be positively embedded in a premise or assumption — this is specified by n in n J ϕ. While /
is used for strictly positive subformulas, J is used for strictly positive subformula occurrences, so
n J ϕ is more restrictive than n / ϕ. Only the ↓ rules can be used on triples with non-empty
extractions. To stop using the ↓ rules, n must be obtained. Because n is a particular instance of

11Here I only cover the intercalation calculus for classical propositional logic, though the modifications necessary
for intuitionistic or first-order logic match earlier discussion on these logics; see the aforementioned references for
descriptions of the intercalation calculus for intuitionistic and first-order logic.

7

G, the exact sequence of ↓ rules is determined when the first one is applied. This corresponds to a
partial natural deduction proof where one notes that the goal is positively embedded in a premise
or assumption and uses elimination rules to get to the goal.

• E↓: Γ ; · ?G and ϕ ∈ Γ and n is an instance of G and n J ϕ 7−→ Γ ;n J ϕ ?G.

• &i↓: Γ ;n J (ϕ1 &ϕ2) ?G 7−→ Γ ;n J ϕi ?G for i = 1 or i = 2.

• →↓: Γ ;n J (ϕ→ψ) ?G 7−→ Γ ; · ?ϕ and Γ ;n J ψ ?G.

• ∨i↓: Γ ;n J (ϕ1 ∨ϕ2) ?G 7−→ Γ ∪ {ϕi} ; · ?G and Γ ∪ {ϕj} ;n J ϕj ?G for i 6= j.

For completeness, though, we cannot only consider eliminating disjunctions in Γ — we must also
consider disjunctions that are strictly positively embedded in formulas in Γ. The following inference
rule, ∨�, is a generalized version of disjunction elimination — ∨�∗ is a special case of ∨� when the
disjunction is in Γ, so ∨�∗ can be removed from any further considerations.

• ∨�: Γ ; · ?G and ρ ∈ Γ and n is an instance of (ϕ∨ψ) and n J ρ 7−→ Γ ;n J ρ ? (ϕ∨ψ) and
Γ ∪ {ϕ} ; · ?G and Γ ∪ {ψ} ; · ?G.

Given a goalG and a set of premises, Γ, we can produce the search space for an intercalation calculus
proof of the possibly-true assertion Γ ` G. Start with Γ ; · ?G and do the following recursively. For
each rule that could be applied to the current node Γc ;nc J ϕc ?Gc, so long as it would not violate
the adjacency condition and would not be a repeated question12, make a branch above it to each
premise, Γn ;nn J ϕn ?Gn, and then visit that premise. For an example of an intercalation calculus
tree, consider tertium non datur .

∅ ; · ?P ∅ ; · ?¬P {¬ (P ∨¬P)} ; · ?⊥

∅ ; · ?P ∨¬P

ffNNNNNNNNNNN

55kkkkkkkkkkkkkk

OO

The root is fully expanded, with branches for ∨1↑, ∨2↑, and ¬C. Each of these nodes, however,
has not yet been expanded — ¬C could be used on all three13, ¬↑ could be used on the middle,
and ⊥(F) could be used on the right. Once such a tree has been fully expanded, it can easily
be evaluated. For any leaf Γ ;n J ϕ ?G, the leaf is marked Y if G ∈ Γ or G equals ϕ, and it
is marked N otherwise. Starting from the leaves, the tree is evaluated14 recursively down to the
root, where each node is marked Y if the dependency or dependencies of at least one of the rules
producing a node above it is satisfied, and N otherwise15. If the root is marked Y, the argument is
provable, otherwise it is not. When used in this fashion in proof search, the intercalation calculus
with the above algorithm provides a complete search procedure, and it will provide only normal
proofs. In practice, it may not be necessary to produce the entire search space tree if the root can

12With the inference rules specified here, there are only a few ways to obtain repeated questions. If one applies
an inference rule when the rule has already been used on the same premises and goal below the current node in the
search tree, this is a repeated question and should not be pursued.

13Using ¬C will not lead to a proof on the left or center node, but it is permissible.
14See Sieg and Byrnes [1998] for a precise description of search space tree evaluation.
15Because of the formulation of the inference rules and the prohibition of duplicate questions, the search space and

search tree are finite.

8

be marked Y without doing so. Because of the correspondence between intercalation calculus rules
and natural deduction inference rules, a search space tree with the root marked Y — a tree for
a theorem — readily provides a natural deduction proof. To obtain one of these proofs — there
may be several — work from the root upwards. From the current node, select one rule application
that is marked Y. Retain it and then traverse its children, repeating as necessary. This produces
a smaller tree from which, by retaining just the goal and mapping the rules in the obvious fashion,
a natural deduction proof is obtained.

1.2.3 Strategic proof search in natural deduction

We define the four following tactics for proof search in natural deduction.

Extraction Use one or more forwards elimination rules from a premise or assumption towards a
goal. This corresponds to using the ↓ intercalation calculus rules.

Inversion Use a backwards introduction rule on a complex goal. This corresponds to using the ↑
intercalation calculus rules.

Cases Use Disjunction Elimination from a premise, assumption, or a disjunction strictly posi-
tively embedded in a premise or assumption16 to a goal. This corresponds to using the ∨�
intercalation calculus rule.

Refutation Use Negation Elimination on a goal. This corresponds to using the ¬C intercalation
calculus rule.

Strategic proof search says to try the above tactics generally in the listed order, skipping tactics
that would lead to partial proofs that violate the adjacency condition or repeated questions. This,
then, is a heuristic or rule for deciding what branch of the intercalation calculus search space to
pursue first. If the entire search space has been traversed and no proof is found, the argument is
invalid. For some invalid arguments in first-order logic, this may not happen in finite time.

In automated proof search, the strategic approach has various strengths. First, the proofs for
which it searches have the subformula property, which places bounds on the search space. Second,
extraction rules are restricted and only used when the goal is obtainable from the premise [Sieg
and Scheines, 1992]. In some circumstances, this can noticeably speed up the search process [Sieg
and Field, 2005].

Strategic proof search is useful for both humans and computers engaged in proof search. For
computers, applying the tactics in order provides a search algorithm for traversing the search space,
expressed by the AProS proof generator [AProS website]. For humans engaged in proof search, the
strategic approach can also be used as an algorithmic proof construction procedure. Students first
learning how to construct natural deduction proofs can have difficulty determining how to proceed,
so having a procedure for completing a proof can be useful — classroom observation suggests
that even students with some experience can have difficulty proving tertium non datur , ` ϕ∨¬ϕ,
DeMorgan’s Law, ¬(ϕ&ψ) ` ¬ϕ∨¬ψ, and Peirce’s Law, ` ((ϕ→ψ)→ϕ)→ϕ. The strategy may
also be used as a valuable heuristic, in the Polyaic sense of the term [Polya, 1945]. Much of the
time, students look at the section of a partial proof and see immediately how to finish it. In that
case, there is no need to explicitly follow the algorithm. On the other hand, students often do not

16See Appendix A for details on strictly positively embedded premises and assumptions.

9

know what to try next or are in a state where they need to backtrack. Thinking strategically can
help them properly determine what actions they might want to take or how much they need to
backtrack.

1.2.4 The extraction rule

Inversion, cases, and refutation all require exactly one rule application to use, but extraction requires
one or more rule applications, making the tactic harder to learn and use. To make the extraction
tactic easier to use in the Carnegie Proof Lab, I introduce the extraction inference rule. To use an
extraction, select a premise and a goal that is positively embedded in the premise. Applying the
rule will use all of the elimination rules necessary to get to the goal. For each rule application that
has a minor premise ϕ, ϕ is added to the partial proof as an open question. See Figure 1.5 and 1.6
for examples of extraction.

1 B→ (C &D) Premise
...

2 C ***
(a) The starting partial proof.

1 B→ (C &D) Premise
...

3 B ***

4 C &D →E, 1, 3

5 C &EL, 4
(b) The partial proof after extracting C
from B→ (C & D).

Figure 1.5: Using the extraction rule.

1 (F ∨G)↔H Premise
...

2 F ***
(a) The starting partial proof.

1 (F ∨G)↔H Premise
...

2 H ***

3 F ∨G →E, 1, 2

4 F Assume

5 G Assume
...

6 F ***

7 F ∨E, 3, 4, 6
(b) The partial proof after extracting F
from (F ∨G)↔H.

Figure 1.6: Using the extraction rule.

10

1.3 AProS: The Proof Generator

The AProS Proof Generator is an automated theorem prover that finds proofs in propositional and
first-order logic [AProS website]. Making use of the intercalation calculus [Sieg, 1992, Sieg and
Scheines, 1992, Sieg and Byrnes, 1998], its search style employs the previously-mentioned strategic
proof search17. While the proof generator can be accessed independently through the Proof Display
[AProS website], it can also be used by other programs as a library capable of producing strategically
generated proofs. There are various ways in which the proof generator improves upon the basic
strategic proof search; I note several here. For propositional logic these include: positive caching,
negative caching, and careful selection of contradictory pairs. None of these improvements deviates
from the aforementioned strategy. For first-order logic, the proof generator takes on a greater
burden: it uses Skolem-Herbrand functions [Sieg and Byrnes, 1998, Enderton, 2001]. Also, it uses
iterative deepening [Luger, 1997, pp. 106] to postpone traversing deep branches in the search space.

1.3.1 How to produce a tactical proof tree

We want to produce a tactical tree where each node 〈ϕ, t〉 has a formula (the goal of the rule
application) and a tactic, and above each node are the open questions upon which that node
depends. Given a natural deduction proof — obtainable from an intercalation calculus tree as
mentioned in Section 1.2.2 — this is a straightforward recursive procedure starting from the goal
and working upwards. For each non-extraction (non-↓) rule application, the goal is known and the
above description of the tactics explains which tactic was used. The open questions are simply
the premises of the intercalation calculus inference rule used in that step. For extraction moves (↓
rules) done in sequence, only one node is created, where ϕ is the goal of the bottommost extraction
move and the open questions are the non-extraction dependencies of the rule applications in the
sequence.

When this process is complete, the newly produced tree directly reflects the strategic moves
used in the proof. Indeed, a preorder traversal18 of the tree gives a convenient step-by-step proof
construction. When obtaining a proof from the proof generator, it is useful for the generator to
retain some basic tactical information. In particular, extraction information is tedious to calculate
after the fact. All of the other tactics are single rule applications, so one can determine their use
simply by examining the current goal and the rule application associated with it. Regardless of
how it is produced, a tactical tree is just what is needed to express AProS’s — or a student’s —
moves in a strategic proof search.

1.4 The Carnegie Proof Lab

The design of the CPT was based on the belief that students learn more from exer-
cises when their problem solving environment has three features. First, its interface
must relieve the student of nonessential cognitive load. . . Second, it must allow students

17As of June 2007, in a few corner cases AProS is not as restrictive as the specification — AProS does not restrict
Negation Introduction or Negation Elimination according to the adjacency condition.

18A preorder traversal of a tree is defined recursively. Starting at the root, visit the current node, then visit each
of the children from left to right. Polish notation is a preorder traversal of the evaluation tree. See Cormen et al.
[2004, pp. 254] or various data structures textbooks for examples.

11

Figure 1.7: The Carnegie Proof Lab.

maximal flexibility in traversing the problem space. Third, it must provide locally
appropriate strategic guidance. [Scheines and Sieg, 1994]

The Carnegie Proof Lab is a graphical proof construction environment. Written in Java, it is a
multi-platform applet that is embedded into the Logic and Proofs course. The goal of the Carnegie
Proof Lab is to make it easier for students to learn how to construct natural deduction proofs,
and, once they can construct them, to prove harder problems with greater ease than on paper.
See Figure 1.7 for a screenshot of the Carnegie Proof Lab. There are several components to the
Carnegie Proof Lab: the partial or complete proof, the rule palette, and the message display. A
problem is complete when there are no open questions left in the proof. To use an inference rule,
students select the goal and premises necessary for the inference rule and click the “apply” button.
A major strength of the Carnegie Proof Lab is that it minimizes the load on working memory, so
that the student may focus on the relevant information; see Anderson et al. [1995, pp. 180] for
more on working memory constraints.

As students progress in the course, they are exposed to more inference rules. The full set
of inference rules for propositional logic, seen in Figure 1.8, incrementally become available to
the student during the semester; these are progressively displayed in the Carnegie Proof Lab.
Additionally, students may optionally view the form of the rule — that is, the outlines shown in
Appendix A — when determining what inference rule to apply. When students make errors using
inference rules, they receive feedback on the nature of the error. See Figure 1.9 for an error where
only one premise is selected for Conjunction Introduction. Specifically, an error is an attempted
use of an inference rule in a manner not specified — for example, providing only one premise to
Conjunction Introduction19. Using an inference rule that does not lead towards a completed proof
does not produce an error message. According to Gilmore [1996, pp. 120], “the emphasis is not on

19This is contrasted with non-strategic rule applications, which are permitted. For instance, even though using
Conjunction Introduction does not follow the aforementioned strategy, it is nonetheless permitted.

12

Figure 1.8: The inference rule palette.

Figure 1.9: A sample error message.

13

how well the user achieves the current task goals, but on how well he or she learns about the nature
of the task in some general abstract way”. It can be instructive, then, to allow students to use
inference rules in valid but unproductive ways — indeed, a main point of strategic proof search is
to provide students a means of identifying good rule applications, so it could be counterproductive
to flag them as errors here.

In accordance with Gilmore [1996, pp. 131], this proof construction environment is designed
to foster planning moves. Students select premises and choose inference rules without having to
actually apply the rule until they are ready. The rule forms can be examined, so students may
select the appropriate rule for the occasion. Indeed, the environment is designed to be transparent
to the extent that students may modify the partial proof by properly using inference rules as they
desire. This allows students to focus on how to connect the premises with the conclusion.

14

Chapter 2

Proof tutoring in propositional logic

The goal of the Proof Tutor is to provide high level advice for students on proofs with the intent
that students will learn to incorporate techniques from hints into their own reasoning. In Logic
and Proofs, strategic proof search, as described in the previous chapter, is used to produce this
high level advice. While there are other heuristics and observations on methods of proofs that
advanced students may determine from either other sources or direct observation of the proof
search process, strategic proof search has several advantages in this setting, both following from its
simplicity. First, although extraction has a somewhat complex precise formal explanation, it can be
simply and informally expressed even to beginning students. The complexity of extraction is partly
offset by the way in which both it and refutation make use of positively embedded subformulas.
Second, the heuristic is quite effective at significantly reducing the search space. Other heuristics
expressing ideas like “using Disjunction Introduction Left or Disjunction Introduction Right often
leads to failure of the branch, so sometimes avoid these rules” or “using Existential Introduction
before Existential Elimination often leads to variables not matching, so sometimes use Existential
Elimination first” are useful in their own right, but they are less beneficial to students learning to
construct proofs because they are more restricted in application and consequently less applicable
overall, and clean expressions of these heuristics can be hard to produce.

Successful tutoring ought to be responsive to the skills of the student, and this holds for strategic
proof tutoring just as it does elsewhere. To account for increasing skill as the student learns,
then, there are three distinct proof tutoring levels or modes: tactical explanation, walking through
a proof, and completing a partial proof. While these will be explored in greater detail in the
following sections, I briefly note some key features here. A tactical explanation is a goal-specific
piece of information explaining which tactics can currently be employed, walking through a proof
provides an example of how to think strategically, and completing a partial proof provides students
with on-demand hints. By sequentially making the tutoring modes available to the student, I hope
to provide a reasonable level of broad support for learning how to strategically construct non-trivial
proofs.

2.1 Tactical explanations in propositional logic

Successful problem solving involves the decomposition of the initial problem state into
subgoals and bringing domain knowledge to bear on those goals. . . . [The] goal structure
can be communicated through help messages [Corbett and Koedinger, 1997, pp. 867].

15

Figure 2.1: An explanation asking the student to select a goal.

Some understanding of the key components of strategic proof search is necessary for using it, so
the Explanation Tutor focuses on just this. In a problem with tactical explanations enabled, at any
time the student may examine how the tactics could be applied. If the student has not selected
a goal, the student is prompted to do so — Figure 2.1 shows a screenshot of this. When an open
question is selected, the four tactics are listed, as shown in Figure 2.2. Each tactic name acts as a
hyperlink, and when a hyperlink is selected, the corresponding tactic’s information is displayed in
greater detail. This advice has two forms. Perhaps the tactic cannot be employed in the current
circumstances, such as cases when there are no extractable disjunctions or existential formulas; this
is shown in Figure 2.3. Alternately, the tactic may be immediately applicable. This is not to say
the tactic will lead to a proof — indeed, in a proof of tertium non datur using inversion first will
not lead to a proof of the proposition, but it is a legitimate use of the tactic. See Figure 2.4 for an
example of this. An explanation of a tactic simply indicates whether a tactic is applicable given
the current circumstances in the proof.

It may seem surprising that students receive explanations for tactics that do not lead to com-
pleted proofs, but this apparent discrepancy is resolved by reexamining the purpose of the tactical
explanations. When students first learn the rules, they have a large search space of possible ac-
tions. The tactics give them a way to restrict and simplify that space — from fourteen basic rules in
propositional logic, only four tactics are produced. For a reasonable but arbitrary partial proof, it
is desirable that students can look at the current open questions and determine which tactics can be
employed, thus effectively conceptualizing the search space. According to Corbett and Koedinger
[1997, pp. 859], “[the] student needs to learn basic declarative facts in a domain. . . . The student
has to learn to associate these facts with problem solving goal structures”. Interestingly, because
the Explanation Tutor offers a great deal of detail to students about the tactics, it can help students
learn both the descriptions of the tactics — basic declarative facts — as well as the procedural
skills involved with determining when the tactics can be used.

16

Figure 2.2: The possible tactics for proving the goal.

Figure 2.3: Explanation for an unusable tactic.

17

2.2 Walking through proofs in propositional logic

. . . when the teacher solves a problem before the class, he should dramatize his ideas a
little and he should put to himself the same questions which he uses when helping the
students. Thanks to such guidance, the student will eventually discover the right use of
these questions and suggestions, and in doing so he will acquire something that is more
important than the knowledge of any particular [fact]. [Polya, 1945]

In order for students to develop the ability to strategically produce proofs within the Carnegie
Proof Lab, the Walkthrough Tutor is designed to provide step-by-step guidance from beginning to
end on a proof. The Carnegie Proof Lab uses AProS to prove assertions, and hints are derived
from the resultant proofs. Since one of the general goals is for students to learn strategic proof
search, the Walkthrough Tutor provides hints on moves couched in strategic terms. Each tactic is
expressible in one move in the Carnegie Proof Lab, and the tutor provides a hint for each move.
These hints include premise and goal information, as well as a brief explanation of why the tactic
ought to be used at that point. See Figure 2.5 for an example of an inversion step in a proof of
tertium non datur . It may happen that upon receiving a hint, the student still does not understand
what is suggested. In this case, the student may click on the tactic for more details. The tactic
name acts a hyperlink. Clicking on it opens a more detailed hint that, in addition to providing
the strategic hint, also displays what rule should be applied to the specified premise and goal.
See Figure 2.6 for the detailed hint for the same inversion step. This type of directed step-by-
step performance feature is a well-recognized instructional intervention [Towne and Munro, 1992,
Corbett and Koedinger, 1997]. When students are attempting to use strategic proof search on hard
proofs, having examples to follow can be highly instructive. The value of examples in instruction
has been reported elsewhere [Chi and Bassok, 1989, pp. 259], and in this setting it should also
prove beneficial. When completing proofs for students in group or individual settings, the instructor
generally explains things in terms of the tactics — “The goal is atomic, so there’s no way to use
inversion here.” or “Look! Our goal is sitting inside of the second premise. Let’s try extraction.”
— so having this type of explanation automated is reasonable.

As students start to learn strategic proof search, they may use the Walkthrough Tutor, but it
may happen that they do not wish to follow the tutor’s advice. Perhaps they are at a point in the
proof where the answer is evident, or perhaps they wish to try an inference rule that is not suggested.
When students use an inference rule not suggested by the walkthrough — the walkthrough suggests
only one inference rule — a warning message is displayed. The student is cautioned that they may
well continue on their own to find a proof, but the walkthrough cannot help them, as seen in Figure
2.7. The student is then free to try completing the proof without assistance. Any time after this,
though, the student may undo moves to get back to the point of deviation from the walkthrough.
When the partial proof is back in the last recommended state — that is, when the off-track moves
have all been undone — the walkthrough is re-enabled and the student may continue to follow it.
Such antics on the student’s part may or may not lead to a completed proof, but the goal of the
Walkthrough Tutor is not to force the student along the prescribed proof path, but to give the
student enough structure to complete the proof strategically. Going off on tangents may have extra
benefits to students — perhaps they are considering why particular moves were recommended, or
perhaps they want to try to prove the problem in a different way. In any case, the student has
fallback assistance, so the walkthrough continues to provide strategic and sufficient assistance for
the student to complete the proof.

18

Figure 2.4: Explanation for inversion on P ∨¬P .

Figure 2.5: Inversion advice on a subgoal of P ∨¬P .

19

Figure 2.6: Detailed inversion advice on a subgoal of P ∨¬P .

Figure 2.7: The warning message for an offtrack move.

20

2.3 Completing proofs in propositional logic

When students are working through proofs in propositional logic, they sometimes get stuck and
do not know what to do next. The aforementioned proof walkthroughs could be useful, but they
require starting from the base partial proof, which does not take into account work already done by
the student on the partial proof. The tactic explanations may also be of use. What would also be
useful, though, is on-demand hints for particular moves in a proof. The Completion Tutor provides
this type of tutoring. When students get stuck, they may ask for hints. Upon their doing so, the
Carnegie Proof Lab examines the current partial proof. If the proof has not yet been started, it
is treated just like a walkthrough — the first move is recommended. If the proof is non-normal, a
hint is generated recommending the removal of the offending lines. Normal proofs are preferred not
because non-normal proofs are incorrect, but because non-normal proofs have extra clutter that is
both cumbersome to the student’s cognitive load as well as simply unnecessary. By removing non-
normal proof steps, then, students benefit immediately, because there is less pointless information
that may confuse them. They may also benefit on future problems, due to a hopefully improved
ability to recognize these feckless non-normal steps for what they are.

2.3.1 Normalizing a proof

In order to provide strategic tutoring to a student with a partial proof, non-normal lines in the
partial proof are undesirable and consequently removed. To make a non-normal partial proof
normal, the simplest thing to do is to remove the non-normal rule applications from the partial
proof — removing the lines produced by these as well as other lines dependent upon them from
the partial proof produces a normal partial proof. See Appendix B for more on this algorithm and
possible alternatives.

2.3.2 Cropping a proof

After removing non-normal lines in a partial proof, in order to provide a completion, the tutor must
decide what other rule applications ought to be removed. If the student is working backwards,
certain uses of Disjunction Introduction Left or Disjunction Introduction Right, say, can lead to
unprovable goals. There are other ways to obtain states that require backtracking too, so it is
important that these lines, as well as perhaps pointless or undesirable forwards rules, are removed.
The key problem in completing a partial proof is determining what rule applications should be
removed from Pu, the partial proof after normalization, before moving to have AProS complete the
cropped partial proof Pc. The quality of a cropping algorithm is determined by how it fares at the
following.

1. Pc must be completable.

2. Pc should complete to a reasonably short proof. This can be judged by comparing the length
of that proof to the length of AProS’s proof of the original assertion.

3. The number of lines that are removed when going from Pu to Pc should be reasonably mini-
mized.

There are many ways in which one can determine what rule applications to remove, so here we
consider a simple algorithm that tries two things. It first checks to see if the current partial proof

21

is completable by AProS, and, if so, the completed proof can be used. If not, it asks AProS for a
proof of the starting assertion, and the rule applications that are in Pu but not in the completed
proof are slated for removal. See Appendix B for more on this algorithm and possible alternatives.

2.3.3 Putting it together

Once a partial proof is normalized in some fashion and cropped as desired, then the correctness of
the cropping algorithm ensures that AProS will be able to find a proof of the resultant partial proof.
The tutor then takes the completed proof from AProS and produces a walkthrough (see Section
2.2) of it. The already-justified lines in the proof correspond to correct steps in the walkthrough,
so the tutor skips over those. From this point, the tutor behaves just as it did for walkthroughs
until the problem is complete. Of course, the student need not follow the walkthrough here until
the proof is complete. If the student deviates from the walkthrough, the tutoring screen is set back
to how it was before a hint was requested, so the student may return to tutoring later in the proof
if desired.

The Completion Tutor thus provides on-demand tutoring at any stage in a problem. First of
all, this enables students to complete the problem at hand. Second, and just as importantly, the
tutoring is only present when students ask for it. This matches “Principle 8 [in designing computer-
based tutoring systems]: Facilitate successive approximations to the target skill” [Anderson et al.,
1995, pp. 181]. In keeping with the observations in [Anderson et al., 1995], it is expected that in
this setting, students will ask for hints less of the time, in correspondence with increasing proof
construction skills.

22

Chapter 3

Discussion

There are several areas of work that connect with dynamic proof tutoring in the Carnegie Proof
Lab. This includes reflection on how best to use the tutor in Logic and Proofs, data analysis on
the effect of its implementation, and a potential link to cognitive science research.

3.1 Incorporation into Logic and Proofs

The three tutoring modes emphasize connected but different aspects of strategic proof search; to
use them effectively they must be deployed in appropriate ways. First, it is worth noting that
the Completion Tutor and Walkthrough Tutor — because they rely on AProS to complete proofs
— cannot be used on unprovable problems. The Explanation Tutor, on the other hand, doesn’t
actually complete proofs, so it can be used for those problems. The Explanation Tutor only
explains what tactics are currently applicable; thus, it can be enabled widely in the Carnegie Proof
Lab without giving students excessive scaffolding. The Completion Tutor provides a reasonable
amount of scaffolding — indeed, it will guide the student through an entire proof if the student
so desires — and so should not be as extensively available. Still, it would be reasonable to have
a handful of problems at the end of each chapter explicitly noted as Completion Tutor-enabled
problems. Finally, to make use of the Walkthrough Tutor at all, students must follow its instructions
explicitly. Because of this, it makes sense to have the Walkthrough Tutor available for a handful of
in-chapter exercises — Learn by Doings — and perhaps a few exercises explicitly noted as such at
the end of the chapter. These three modes can all be used starting with the first chapter on proof
search1. One can conceive of other ways of presenting problems to students — perhaps a problem
selection engine that has skill thresholds for inference rules or tactics, where completing a problem
without asking for a hint gives students a better score in the pertinent categories — in any case, the
tutoring modes are to be deployed in a way where they initially provide a great deal of scaffolding
and support decreases as students (presumably) become more skilled at strategic proof search.

1In the first chapter on proof search, the negation rules aren’t available yet, so the tutoring modes should not
indicate it. In fact, only the Explanation Tutor needs any modification to achieve this.

23

3.2 Research into the Psychology of Proof

In Rips [1994], it is argued that certain aspects of human deductive reasoning can be effectively
modeled through a kind of natural deduction proof search mechanism. Rips’s search engine, PSY-
COP, is similar in character to AProS. As Sieg has noted [AProS website], both PSYCOP and the
AProS search algorithm can be expressed as production rules — so it is conceivable to represent
PSYCOP as a model in an ACT-R system2. To the degree that Rips is correct about PSYCOP as
a model of deduction, there is significant motivation to study strategic proof search for that topic
alone.

3.3 Extensions

While some of the tutoring-related features described here have been in use for the past year, the
tutors themselves will be used in a semester-length version of the course for the first time Fall
2007. By analyzing the logging data produced by students using the Carnegie Proof Lab — with a
computer-based problem-solving environment, it is feasible to gather detailed, extensive data — it
is possible to ascertain what tutoring modes are used by and useful to the students. For instance,
suppose the Completion Tutor is available for five assigned problems at the end of some chapter.
Suppose students are having difficulty on problems of comparable difficulty, and use the Completion
Tutor when needed. If the Completion Tutor is effective, then one would predict that the need
for the Completion Tutor will decrease and that fewer mistakes will be made. This should happen
anyway, at least for students who are learning by problem solving, but the rate of decrease will rise
in proportion to the Completion Tutor’s effectiveness3. For students who are not making progress
through repeated exposure to proofs without tutoring, the Completion Tutor can be even more
valuable.

The propositional tutor for the Carnegie Proof Lab has been implemented, and some details of
how it could be extended to first-order logic have been explored — see Appendix B for more on
this. The Explanation Tutor already works for first-order logic, and the Walkthrough Tutor can
readily be made to find proofs in first-order logic. The Completion Tutor, on the other hand, may
not be so easily extendable to first-order logic, because AProS uses Skolem-Herbrand variables, but
students in the Carnegie Proof Lab do not. Other difficulties may also arise. For instance, when
describing Universal Elimination, it is necessary to sensibly display information on instantiating
variables. For longer extraction branches, this could require substantial modification to the current
framework. The same concern exists for Universal Introduction and Existential Introduction. Also,
because students are exposed to first-order logic several weeks after working on strategic proof
search in propositional logic, some aspects of strategic proof search do not need to be emphasized
as much as others.

Some current work on the AProS project involves work on selected parts of elementary set
theory and computability theory; see Sieg [2007]. Parts of the Logic and Proofs course will be
combined with twelve new chapters — six on elementary set theory and six on computability
theory. In combination with this, AProS has been and will continue to be extended to deal with

2See Anderson [1993] for more on the ACT-R theory.
3In Scheines and Sieg [1994], the effect of strategic tutoring in the Carnegie Proof Tutor, the Carnegie Proof Lab’s

predecessor, is noted. It was observed there that on hard problems, strategic tutoring can be greatly beneficial, and
we expect to observe similar results with tutoring in the Carnegie Proof Lab.

24

proofs of certain theorems in these areas. AProS can be used to produce hints in propositional and
first-order logic, and the Carnegie Proof Lab can use AProS to generate hints for proof construction
in these logics; similarly, as AProS and the Carnegie Proof Lab are modified to incorporate the
appropriate parts of elementary set theory and computability, it may be possible to use AProS as
a hint generator in this extended setting much as it works in the current one.

25

Appendix A

Inference Rules

The inference rules for propositional logic are as follows.

Conjunction Elimination Left

a ϕ&ψ

b ϕ &EL, a

Conjunction Elimination Right

a ϕ&ψ

b ψ &ER, a

Conjunction Introduction

a ϕ

b ψ

c ϕ&ψ &I, a, b

Disjunction Elimination ρ may be ⊥. It may also be noted that Disjunction Elimination can
be used from premises and assumptions that are disjunctions as well as strictly positively
embedded disjunctions. In the case that the desired disjunction is not immediately available,
an extraction branch is produced leading to the disjunction, and Disjunction Elimination is
applied on that disjunction and the specified goal.

26

a ϕ∨ψ

b ϕ Assume
...

c ρ

d ψ Assume
...

e ρ

f ρ ∨E, a, c, e

Disjunction Introduction Left

a ψ

b ϕ∨ψ ∨IL, a

Disjunction Introduction Right

a ϕ

b ϕ∨ψ ∨IR, a

Implication Elimination

a ϕ→ψ

b ϕ

c ψ →E, a, b

Implication Introduction

a ϕ Assume
...

b ψ

c ϕ→ψ →I, b

Biconditional Elimination Left Because the biconditional can be written in terms of a con-
junction of conditionals, it is often omitted from discussion. For convenience, though, it may
be used in Logic and Proofs.

a ϕ↔ψ

b ϕ

c ψ ↔EL, a, b

27

Biconditional Elimination Right

a ϕ↔ψ

b ψ

c ϕ ↔ER, a, b

Biconditional Introduction

a ϕ Assume
...

b ψ

c ψ Assume
...

d ϕ

e ϕ↔ψ ↔I, b, d

Negation Elimination

a ¬ϕ Assume
...

b ⊥

c ϕ ¬E, b

Negation Introduction

a ϕ Assume
...

b ⊥

c ¬ϕ ¬I, b

Falsum Introduction

a ϕ

b ¬ϕ

c ⊥ ⊥I, a, b

Ex falso quodlibet Ex falso quodlibet is not one of the basic rules in the Carnegie Proof Lab, but
it would be if one were to use the Carnegie Proof Lab for intuitionistic logic.

28

a ⊥

b ϕ ¬Q, a

The following are the first-order logic inference rules.

Universal Elimination t must replace all free instances of x in ϕ. Let the syntax ϕ[t/x] de-
note the formula ϕ where all free instances of x have been replaced with t. This is called
substituting t for x.

a (∀x)ϕ

b ϕ [t/x] ∀E, a

Universal Introduction x must replace all free instances of z in ϕ(z), and z must not occur free
in any assumption upon which line b depends.

a ϕ

b (∀x)ϕ [x/z] ∀I, a

Existential Elimination z must not be free in (∃x)ϕ or ψ and z must not occur free in any
assumption upon which line d depends. ρ may be ⊥.

a (∃x)ϕ

b ϕ [z/x] Assume
...

c ρ

d ρ ∃E, a, c

Existential Introduction

a ϕ

b (∃x)ϕ [x/z] ∃I, a

29

Appendix B

Algorithms

Although proof tutoring currently works just for propositional logic, it is possible to extend it to
first-order logic. Thus, the algorithms described here are defined for both propositional logic and
first-order logic where appropriate.

Partial proof normalization

In propositional logic, given a partial proof with non-normal steps, one can examine it and easily
determine the pairs of inference rule applications that violate the adjacency condition or are not
p-normal. Given this list of pairs, there are two reasonable methods for normalizing the proof.

1. For each pair of inference rule applications, one can normalize the partial proof much as one
would if it were a completed proof. If the pair involves Conjunction Introduction on ϕ1 and
ϕ2 and Conjunction Elimination to ρ, then either ϕ1 or ϕ2 has a formula equal to ρ and should
be used in place of ρ. If the pair involves Disjunction Introduction on some premise ϕ and
then Disjunction Elimination to ρ, then the two subproofs that resulted from Disjunction
Elimination should be removed, and the work in the subproof with the assumption whose
formula equals ϕ should be moved to below ϕ and above ρ. For Negation Elimination on ϕ
just above Falsum Introduction, the two rule applications are removed, and work done inside
the subproof (from ¬ϕ to ⊥) is adjusted to connect with the goal of the Falsum Introduction
rule application. Negation Introduction is treated similarly. Fortunately, because there are
no other ways of producing non-normal proofs in the Carnegie Proof Lab with the basic
inference rules1, the above cases are the only ways students could produce non-normal partial
proofs. For first-order logic, it is also necessary to consider pairs of existential and universal
introduction and elimination. For Universal Introduction on ϕ (x) to Universal Elimination
with goal ϕ (y), one can remove the two rule applications and use ϕ (x) in place of ϕ (y). For
Existential Introduction on ϕ (x) to Existential Elimination with premise ϕ (y) and goal ρ,
any work done below ϕ (y) can be moved below ϕ (x) and y suitably replaced with x.

2. To make a partial proof normal, one can simply remove the pairs of inference rule applica-
tions that make it non-normal. In the case of Conjunction Introduction and Conjunction
Elimination pairs, any dependencies below the rule applications must also be removed. For

1There is no way for students to arbitrarily make assumptions; thus, Implication Introduction and Biconditional
Introduction cannot be used in a forwards direction.

30

Disjunction Introduction and Disjunction Elimination pairs, it is necessary to remove the
two rule applications and the subproofs that resulted from Disjunction Elimination. For Fal-
sum Introduction and either Negation Introduction or Negation Elimination, the two rule
applications and the subproof created by Negation Introduction or Negation Elimination are
removed. For Existential Introduction and Existential Elimination pairs, the two rule appli-
cations and the subproof are removed. This process may remove potentially large segments
of the partial proof, if a significant amount of work is dependent on a non-normal pair of rule
applications.

Either algorithm is sufficient for the goals here, since the only requirement is to reasonably produce
a normal partial proof.

Partial proof cropping

To crop a normal partial proof Pu and produce a new partial proof Pc satisfying the invariants in
Section 2.3.2, there are many possible solutions; we consider several here.

1. Obtain a proof of the base assertion from AProS. Retain the student’s work only to the extent
that it matches AProS’s proof.

2. Attempt to complete the partial proof Pu using AProS. If such a proof is obtainable, do not
remove anything. If it is not obtainable, then use algorithm 1.

3. It is possible to modify algorithm 2 in a small but useful way. Attempt to complete the partial
proof Pu using AProS. If a proof is obtained, then do not remove anything. If not, obtain a
proof of the base assertion from AProS. Determine the spot where the student’s proof first
diverges from this proof, and note the first rule application made by the student and not by
AProS. Then ask AProS to complete the partial proof that includes the overlap between the
proof and the partial proof with the addition of the rule application just mentioned. If AProS
succeeds, retain all work consistent with this new proof. If not, use algorithm 1.

4. One can also brute-force the entire operation. For the current partial proof, use AProS
to attempt to complete it. If AProS succeeds, then do not remove anything. If not, then
consider removing the rule application that produced the current goal2. Now try to complete
this partial proof. Keep removing goals until a proof is found. Once a proof is found, retain
all work consistent with it. In the worst case, this algorithm acts like algorithm 2.

All of the algorithms just mentioned fulfill the requirement, though they obviously have different
strengths. It is clear that algorithm 1 is sometimes too simple and algorithm 4 may be too compu-
tationally intensive, depending on the implementation, so perhaps one of the middle algorithms —
or a modification thereof — is desirable in practice. For first-order logic, if Pu is not completable,
it is possible that AProS will search indefinitely for a proof. One could modify the algorithms for
completing partial proofs, though, by placing a cap on the depth of the tree — the number of
inference rules applied in the completed proof — at, say, one hundred inference rule applications.
Proofs in the Carnegie Proof Lab are typically for problems of shorter length than this, so such an
upper bound is reasonable.

2There may be multiple open questions; an implementation of this or the previous algorithm would have to choose
a good approach for dealing with multiple goals.

31

It may often be possible to classify certain kinds of unwanted rule applications. For instance,
algorithm 1 will always crop forwards introduction moves, so one could provide more detailed feed-
back specifically addressing the in-principle undesirability of such rule applications. The other large
class of rule applications leading to cropping are backwards rules that lead to partial proof graphs
for which backtracking is necessary. It is also possible to more reasonably articulate backtracking
steps in cropping, though in general it is difficult to clearly explain why a particular rule application
led to a failed branch.

32

Bibliography

John R. Anderson. Rules of the Mind. Erlbaum, Hillsdale, NJ, 1993.

John R. Anderson, Albert T. Corbett, Kenneth R. Koedinger, and Ray Pelletier. Cognitive tutors:
Lessons learned. The Journal of the Learning Sciences, 4(2):167–207, 1995.

AProS website. AProS: Automated Proof Search. Carnegie Mellon University, Philosophy Depart-
ment, project website since 2004, 2006. URL http://www.phil.cmu.edu/projects/apros/.

Michelene T. H. Chi and Miriam Bassok. Learning from examples via self-explanations. In Lauren B.
Resnick, editor, Knowing, learning, and instruction: Essays in honor of Robert Glaser, pages
251–282. Erlbaum, Hillsdale, NJ, 1989.

Michelene T. H. Chi, Nicholas De Leeuw, Mei-Hung Chiu, and Christian Lavancher. Eliciting
self-explanations improves understanding. Cognitive Science, 18(3):439–477, 1994.

Albert T. Corbett and Kenneth R. Koedinger. Intelligent tutoring systems. In Martin Helander,
T. K. Landauer, and P. Prabhu, editors, Handbook of Human-Computer Interaction, pages 849–
874. Elsevier Science B.V., St. Louis, 1997.

Thomas H. Cormen, Charles E. Leiserson, Ronald R. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, second edition, 2004. ISBN 0-262-03293-7.

Herbert B. Enderton. A Mathematical Introduction to Logic. Harcourt Academic Press, Burlington,
MA, second edition, 2001. ISBN 0-12-238452-0.

Flash website. Adobe flash player. Macromedia website, 2007. URL http://www.macromedia.
com/software/flash/about/.

Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, pages 68–128. North-Holland, 1969. Written in 1934.

David J. Gilmore. The relevance of HCI guidelines for educational interfaces. Machine-Mediated
Learning, 5(2):119–133, 1996.

Robert Harper. Practical Foundations for Programming Languages. Carnegie Mellon University,
Pittsburgh, PA, draft edition, 2007. URL http://www.cs.cmu.edu/~rwh/plbook/. Updated 10
April 2007.

George F. Luger. Artificial Intelligence: Structures and Strategies for Complex Problem Solving.
Pearson Education Limited, Essex, fourth edition, 1997. ISBN 0201-64866-0.

33

Open Learning Initiative website. Open Learning Initiative: Logic & Proofs. Carnegie Mellon
University, course website since 2003, 2006. URL http://www.cmu.edu/oli/courses/enter_
logic.html.

Francis J. Pelletier. A brief history of Natural Deduction. History and Philosophy of Logic, 20:
1–31, 1999.

G. Polya. How To Solve It. Princeton University Press, Princeton, NJ, second edition, 1945.

Dag Prawitz. Natural Deduction: A Proof-Theoretic Study. Almqvist & Wiksell, Stockholm, 1965.

Lance J. Rips. Psychology of Proof. MIT Press, Cambridge, MA, 1994. ISBN 978-0262181532.

Richard Scheines and Wilfried Sieg. Computer environments for proof construction. Interactive
Learning Environments, 4(2):159–169, 1994.

Wilfried Sieg. Mechanisms and Search (Aspects of Proof Theory). AILA Preprint, Milan, 1992.

Wilfried Sieg. The structure of normal proofs and automated search. Manuscript, August 2005.

Wilfried Sieg. The AProS project: Strategic thinking and computational logic. To appear in Logic
Journal of the IGPL, draft, 2007.

Wilfried Sieg and John Byrnes. Normal natural deduction proofs (in classical logic). Studia Logica,
60(1):67–106, 1998.

Wilfried Sieg and Clinton Field. Automated search for Gödel’s proofs. Annals of Pure and Applied
Logic, 133(1):319–338, 2005.

Wilfried Sieg and Richard Scheines. Searching for proofs (in sentential logic). In Leslie Burkholder,
editor, Philosophy and the Computer. Westview Press, Boulder, 1992.

Douglas M. Towne and Allen Munro. Supporting diverse instructional strategies in a simulation-
oriented training environment. In J. Regian and V. Shute, editors, Cognitive Approaches to
Automated Instruction. Lawrence Erlbaum Associates, Hillsdale, NJ, 1992.

Dirk van Dalen. Logic and Structure. Springer, Berlin, fourth edition, 2004. ISBN 3-540-20879-8.

34

